Fine-tuning pre-trained models is a powerful way to improve their performance for specific tasks. In this blog, we’ll walk you through how to fine-tune the Qwen2.5 VL model, which is designed to work with both images and text. This guide will cover everything you need to know, from setting up your environment to training the model and using it for inference.
We’ll break down the process step by step, explaining how to prepare your data, configure the model, and train it efficiently. Whether you’re new to fine-tuning or have experience with it, this guide will help you understand each part of the process and make it easier for you to apply the Qwen2.5 VL model to your own projects. Let’s get started!
Before we begin, we need a GPU with a minimum 18GB of vram . Then we need to create a Python environment and install all required dependencies. Each package serves a specific purpose.
python -m venv venv
source venv/bin/activate
pip install -q git+https://github.com/huggingface/transformers accelerate peft bitsandbytes qwen-vl-utils[decord]==0.0.8 lightning nltk
The data structure is crucial for proper training. We need to organize our data in a way that makes it easy to load and process both images and their corresponding text annotations.
The data directory should be in the following format:
Data/
├── train/
│ ├── annotations.jsonl
│ ├── image_1.jpg
│ ├── image_2.jpg
│ ├── ...
│ ├── image_n.jpg
├── val/
│ ├── annotations.jsonl
│ ├── image1.jpg
│ ├── image2.jpg
│ ├── ...
│ ├── image_n.jpg
Example annotation format
Image
{
"image": "image_1.jpg",
"prefix": "extract data in JSON format",
"suffix": {
"route": "O385-YZ-713",
"pallet_number": "17",
"delivery_date": "6/8/2024",
"load": "3",
"dock": "D29",
"shipment_id": "W26118105447",
"destination": "33081 Campbell Fork Apt. 406, West Georgeview, OK 60970",
"asn_number": "4164755503",
"salesman": "KATIE FRANCO",
"products": [
{
"description": "675849 - 6PK OF SHAMPOO",
"cases": "8",
"sales_units": "64",
"layers": "2"
},
{
"description": "707106 - 24PK OF TOILET CLEANER",
"cases": "32",
"sales_units": "64",
"layers": "1"
},
{
"description": "246810 - ROLL OF MASKING TAPE",
"cases": "4",
"sales_units": "2",
"layers": "5"
},
{
"description": "753486 - 24PK OF DISPOSABLE FACE MASKS",
"cases": "16",
"sales_units": "32",
"layers": "1"
}
],
"total_cases": "60",
"total_units": "162",
"total_layers": "9",
"printed_date": "11/29/2024 17:03",
"page_number": "71"
}
}
Here prefix will be system prompt and the suffix will be the assistant response.
The format_data function structures our data in the chat format that Qwen2.5 VL expects, creating a three-turn conversation format with a system message (sets context), a user message (contains image and input text), and an assistant message (contains the target response).
The JSONLDataset class handles data loading and processing by reading JSONL annotations, loading corresponding images, and formatting data into the required conversation structure.
import os
import json
import random
from PIL import Image
from torch.utils.data import Dataset
def format_data(image_directory_path, entry):
return [
{
"role": "system",
"content": [{"type": "text", "text": SYSTEM_MESSAGE}],
},
{
"role": "user",
"content": [
{
"type": "image",
"image": image_directory_path + "/" + entry["image"],
},
{
"type": "text",
"text": entry["prefix"],
},
],
},
{
"role": "assistant",
"content": [{"type": "text", "text": entry["suffix"]}],
},
]
class JSONLDataset(Dataset):
def __init__(self, jsonl_file_path: str, image_directory_path: str):
self.jsonl_file_path = jsonl_file_path
self.image_directory_path = image_directory_path
self.entries = self._load_entries()
def _load_entries(self):
entries = []
with open(self.jsonl_file_path, 'r') as file:
for line in file:
data = json.loads(line)
entries.append(data)
return entries
def __len__(self):
return len(self.entries)
def __getitem__(self, idx: int):
if idx < 0 or idx >= len(self.entries):
raise IndexError("Index out of range")
entry = self.entries[idx]
image_path = os.path.join(self.image_directory_path, entry['image'])
image = Image.open(image_path)
return image, entry, format_data(self.image_directory_path, entry)
Loading the dataset
train_dataset = JSONLDataset(
jsonl_file_path=f"{dataset.location}/train/annotations.jsonl",
image_directory_path=f"{dataset.location}/train",
)
valid_dataset = JSONLDataset(
jsonl_file_path=f"{dataset.location}/valid/annotations.jsonl",
image_directory_path=f"{dataset.location}/valid",
)
Next, we load the model and configure it for training.
Experience seamless collaboration and exceptional results.
Why LoRA?
LoRA (Low-Rank Adaptation) reduces memory usage and training time by training only a small set of adapter parameters instead of the full model.
Why QLoRA?
QLoRA (Quantized LoRA) further reduces memory usage by quantizing the base model to 4 bits, while preserving performance.
import torch
from peft import get_peft_model, LoraConfig
from transformers import BitsAndBytesConfig
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor
MODEL_ID = "Qwen/Qwen2.5-VL-3B-Instruct"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
USE_QLORA = True
lora_config = LoraConfig(
lora_alpha=16,
lora_dropout=0.05,
r=8,
bias="none",
target_modules=["q_proj", "v_proj"],
task_type="CAUSAL_LM",
)
if USE_QLORA:
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_type=torch.bfloat16
)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID,
device_map="auto",
quantization_config=bnb_config if USE_QLORA else None,
torch_dtype=torch.bfloat16)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
MIN_PIXELS = 256 * 28 * 28
MAX_PIXELS = 1280 * 28 * 28
processor = Qwen2_5_VLProcessor.from_pretrained(MODEL_ID, min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS)
Collate functions are essential because they handle the batching of diverse data types, ensure proper padding and formatting, prepare inputs in the required model format, and manage special tokens and labels for training.
The train_collate_fn function prepares data for training by applying chat templates to text, processing images into the correct format, creating attention masks, managing special tokens like padding and image tokens, and preparing labels for loss calculation.
from qwen_vl_utils import process_vision_info
def train_collate_fn(batch):
_, _, examples = zip(*batch)
texts = [
processor.apply_chat_template(example, tokenize=False)
for example
in examples
]
image_inputs = [
process_vision_info(example)[0]
for example
in examples
]
model_inputs = processor(
text=texts,
images=image_inputs,
return_tensors="pt",
padding=True
)
labels = model_inputs["input_ids"].clone()
# mask padding tokens in labels
labels[labels == processor.tokenizer.pad_token_id] = -100
if isinstance(processor, Qwen2_5_VLProcessor):
image_tokens = [151652, 151653, 151655]
else:
image_tokens = [processor.tokenizer.convert_tokens_to_ids(processor.image_token)]
# mask image token IDs in the labels
for image_token_id in image_tokens:
labels[labels == image_token_id] = -100
input_ids = model_inputs["input_ids"]
attention_mask = model_inputs["attention_mask"]
pixel_values = model_inputs["pixel_values"]
image_grid_thw = model_inputs["image_grid_thw"]
return input_ids, attention_mask, pixel_values, image_grid_thw, labels
The evaluation collate function is unique because it doesn't require labels, preserves target suffixes for comparison, and removes assistant responses, prompting the model to generate them.
def evaluation_collate_fn(batch):
_, data, examples = zip(*batch)
suffixes = [d["suffix"] for d in data]
# drop the assistant portion so the model must generate it
examples = [e[:2] for e in examples]
texts = [
processor.apply_chat_template(example, tokenize=False)
for example
in examples
]
image_inputs = [
process_vision_info(example)[0]
for example
in examples
]
model_inputs = processor(
text=texts,
images=image_inputs,
return_tensors="pt",
padding=True
)
input_ids = model_inputs["input_ids"]
attention_mask = model_inputs["attention_mask"]
pixel_values = model_inputs["pixel_values"]
image_grid_thw = model_inputs["image_grid_thw"]
return input_ids, attention_mask, pixel_values, image_grid_thw, suffixes
from torch.utils.data import DataLoader
BATCH_SIZE = 1
NUM_WORKERS = 0
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, collate_fn=train_collate_fn, num_workers=NUM_WORKERS, shuffle=True)
valid_loader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, collate_fn=evaluation_collate_fn, num_workers=NUM_WORKERS)
Lightning offers an organized training code structure, automatic GPU optimization, easy logging and checkpointing, and simple validation implementation.
import lightning as L
from nltk import edit_distance
from torch.optim import AdamW
class Qwen2_5_Trainer(L.LightningModule):
def __init__(self, config, processor, model):
super().__init__()
self.config = config
self.processor = processor
self.model = model
def training_step(self, batch, batch_idx):
input_ids, attention_mask, pixel_values, image_grid_thw, labels = batch
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
pixel_values=pixel_values,
image_grid_thw=image_grid_thw,
labels=labels
)
loss = outputs.loss
self.log("train_loss", loss, prog_bar=True, logger=True)
return loss
def validation_step(self, batch, batch_idx, dataset_idx=0):
input_ids, attention_mask, pixel_values, image_grid_thw, suffixes = batch
generated_ids = self.model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
pixel_values=pixel_values,
image_grid_thw=image_grid_thw,
max_new_tokens=1024
)
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids
in zip(input_ids, generated_ids)]
generated_suffixes = processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
scores = []
for generated_suffix, suffix in zip(generated_suffixes, suffixes):
score = edit_distance(generated_suffix, suffix)
score = score / max(len(generated_suffix), len(suffix))
scores.append(score)
print("generated_suffix", generated_suffix)
print("suffix", suffix)
print("score", score)
score = sum(scores) / len(scores)
self.log("val_edit_distance", score, prog_bar=True, logger=True, batch_size=self.config.get("batch_size"))
return scores
def configure_optimizers(self):
optimizer = AdamW(self.model.parameters(), lr=self.config.get("lr"))
return optimizer
def train_dataloader(self):
return DataLoader(
train_dataset,
batch_size=self.config.get("batch_size"),
collate_fn=train_collate_fn,
shuffle=True,
num_workers=10,
)
def val_dataloader(self):
return DataLoader(
valid_dataset,
batch_size=self.config.get("batch_size"),
collate_fn=evaluation_collate_fn,
num_workers=10,
)
Each parameter serves a specific purpose: max_epochs defines total training iterations, batch_size is kept small due to model size, lr is optimized for LoRA, gradient_clip_val prevents exploding gradients, and accumulate_grad_batches simulates larger batch sizes.
config = {
"max_epochs": 10,
"batch_size": 1,
"lr": 2e-4,
"check_val_every_n_epoch": 2,
"gradient_clip_val": 1.0,
"accumulate_grad_batches": 8,
"num_nodes": 1,
"warmup_steps": 50,
"result_path": "qwen2.5-3b-instruct-ft"
}
Saving checkpoints ensure training can resume if interrupted, preserves the best models, prevents progress loss, and facilitates deployment
from lightning.pytorch.callbacks import Callback
from lightning.pytorch.callbacks.early_stopping import EarlyStopping
early_stopping_callback = EarlyStopping(monitor="val_edit_distance", patience=3, verbose=False, mode="min")
class SaveCheckpoint(Callback):
def __init__(self, result_path):
self.result_path = result_path
self.epoch = 0
def on_train_epoch_end(self, trainer, pl_module):
checkpoint_path = f"{self.result_path}/{self.epoch}"
os.makedirs(checkpoint_path, exist_ok=True)
pl_module.processor.save_pretrained(checkpoint_path)
pl_module.model.save_pretrained(checkpoint_path)
print(f"Saved checkpoint to {checkpoint_path}")
self.epoch += 1
def on_train_end(self, trainer, pl_module):
checkpoint_path = f"{self.result_path}/latest"
os.makedirs(checkpoint_path, exist_ok=True)
pl_module.processor.save_pretrained(checkpoint_path)
pl_module.model.save_pretrained(checkpoint_path)
print(f"Saved checkpoint to {checkpoint_path}")
The training process combines all previous components and leverages GPU acceleration, applies gradient accumulation, performs validation checks, saves checkpoints, and monitors progress.
trainer = L.Trainer(
accelerator="gpu",
devices=[0],
max_epochs=config.get("max_epochs"),
accumulate_grad_batches=config.get("accumulate_grad_batches"),
check_val_every_n_epoch=config.get("check_val_every_n_epoch"),
gradient_clip_val=config.get("gradient_clip_val"),
limit_val_batches=1,
num_sanity_val_steps=0,
log_every_n_steps=10,
callbacks=[SaveCheckpoint(result_path=config["result_path"]), early_stopping_callback],
)
trainer.fit(model_module)
This inference pipeline provides a streamlined approach to utilizing the fine-tuned model
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-3B-Instruct ",
device_map="auto",
torch_dtype=torch.bfloat16
)
processor = Qwen2_5_VLProcessor.from_pretrained(
"Qwen/Qwen2.5-VL-3B-Instruct ",
min_pixels=MIN_PIXELS,
max_pixels=MAX_PIXELS
)
ft_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"/path/to/your/model/qwen2.5-3b-instruct-ft/latest",
device_map="auto",
torch_dtype=torch.bfloat16
)
ft_processor = Qwen2_5_VLProcessor.from_pretrained(
"/path/to/your/model/qwen2.5-3b-instruct-ft/latest",
min_pixels=MIN_PIXELS,
max_pixels=MAX_PIXELS
)
def run_inference(model, processor, conversation, max_new_tokens=1024, device="cuda"):
text = processor.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
image_inputs, _ = process_vision_info(conversation)
inputs = processor(
text=[text],
images=image_inputs,
return_tensors="pt",
)
inputs = inputs.to(device)
generated_ids = model.generate(**inputs, max_new_tokens=max_new_tokens)
generated_ids_trimmed = [
out_ids[len(in_ids):]
for in_ids, out_ids
in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
return output_text[0]
image_path = path/to/your/image
conversation=[
{
"role": "user",
"content": [
{"type": "image", "image": image_path, "resized_height": 1080, "resized_width": 480},
{"type": "text", "text": text_input},
],
}
]
output = run_inference(model, processor, conversation)
ft_output= run_inference(ft_model, ft_processor, conversation)
print(output)
Original model output
"route": {
"id": "T147-EH-365",
"delivery_date": "3/31/2024"
},
"shipment_id": "E72927453150",
"address": {
"city": "Ricetown",
"state": "SD",
"zip": "55424"
},
"asn_number": "2705905007",
"dock": "D21",
"salesman": "BRIDGET WEBER",
"products": [
{
"product_id": "384756",
"name": "CASE OF BUCKET LIDS",
"cases": 4,
"units": 32,
"layers": 4
},
{
"product_id": "836495",
"name": "CASE OF CLEANING BRUSHES",
"cases": 32,
"units": 32,
"layers": 4
},
{
"product_id": "394758",
"name": "BOX OF WINDOW CLEANERS",
"cases": 16,
"units": 8,
"layers": 5
},
{
"product_id": "485763",
"name": "BOX OF WORK GLOVES",
"cases": 2,
"units": 2,
"layers": 2
},
{
"product_id": "987654",
"name": "CASE OF AIR FRESHENER SPRAYS",
"cases": 64,
"units": 8,
"layers": 4
}
],
"pallet_total": {
"cases": 118,
"units": 82,
"layers": 19
},
"printed_date": "11/29/2024 17:03",
"page_number": 48
}
```
Fine-tuned model output
{
"pallet_number": "1",
"load": "3",
"route": "T147-EH-365",
"delivery_date": "3/31/2024",
"shipment_id": "E72927453150",
"dock": "D21",
"destination": "52267 Russell Burgs, Ricetown, SD 55424",
"asn_number": "2705905007",
"salesman": "BRIDGET WEBER",
"products": [
{
"description": "384756 - CASE OF BUCKET LIDS",
"cases": "4",
"sales_units": "32",
"layers": "4"
},
{
"description": "836495 - CASE OF CLEANING BRUSHES",
"cases": "32",
"sales_units": "32",
"layers": "4"
},
{
"description": "394758 - BOX OF WINDOW CLEANERS",
"cases": "16",
"sales_units": "8",
"layers": "5"
},
{
"description": "485763 - BOX OF WORK GLOVES",
"cases": "2",
"sales_units": "2",
"layers": "2"
},
{
"description": "987654 - CASE OF AIR FRESHENER SPRAYS",
"cases": "64",
"sales_units": "8",
"layers": "4"
}
],
"total_cases": "118",
"total_units": "82",
"total_layers": "19",
"printed_date": "11/29/2024 17:03",
"page_number": "48"
}
This comprehensive step-by-step guide breaks down the complex process of fine-tuning Qwen2.5 VL model into manageable, sequential phases. Starting from environment setup through to inference, each step is carefully documented with both explanatory text and complete code implementations. The structured approach allows practitioners to understand not just what each component does, but also how it fits into the larger pipeline.
Experience seamless collaboration and exceptional results.
By following these eight clearly defined steps—environment setup, data preparation, model configuration, data processing, training architecture, checkpoint management, training execution, and inference—developers can systematically implement their fine-tuning process while avoiding common pitfalls. The inclusion of practical best practices and detailed explanations for each implementation choice makes this guide accessible for teams looking to adopt the Qwen2.5 VL model for their specific needs, regardless of their prior experience with model fine-tuning.