Facebook iconWhat is Tokenization and How does it work? - F22 Labs
Blogs/AI

What is Tokenization and How does it work?

Sep 17, 20244 Min Read
by Ajay Patel
What is Tokenization and How does it work? Hero

Tokenization is a fundamental process in Natural Language Processing (NLP) and plays a crucial role in preparing text data for machine learning models. This blog post will break down what tokenization is, why it's important, and how it works with a concrete example.

What is Tokenization?

Tokenization is the process of splitting text into smaller, manageable pieces called tokens. These tokens can be words, subwords, characters, or other units depending on the tokenization strategy. The purpose of tokenization is to transform text into a format that can be effectively processed by machine learning algorithms.

Why is Tokenization Important?

Before any NLP model can analyze and understand text, it needs to be converted into a numerical format. Tokenization is the first step in this conversion process. By breaking down text into tokens, we enable models to handle, learn from, and make predictions based on textual data.

How Tokenization Works

Let’s dive into a practical example to understand tokenization better. Consider the sentence:

"f22 Labs: A software studio based out of Chennai. We are the rocket fuel for other startups across the world, powering them with extremely high-quality software. We help entrepreneurs build their vision into beautiful software products."

Partner with Us for Success

Experience seamless collaboration and exceptional results.

Here’s a step-by-step breakdown of how tokenization works:

Step 1: Splitting the Sentence into Tokens

The first step in tokenization is breaking the sentence into smaller units. Depending on the tokenizer used, these tokens can be:

Words: ["f22", "Labs", ":", "A", "software", "studio", "based", "out", "of", "Chennai", ".", "We", "are", "the", "rocket", "fuel", "for", "other", "startups", "across", "the", "world", ",", "powering", "them", "with", "extremely", "high-quality", "software", ".", "We", "help", "entrepreneurs", "build", "their", "vision", "into", "beautiful", "software", "products", "."]

Subwords: the tokens might be more granular. For example, ["f22", "Lab", "s", ":", "A", "software", "studio", "based", "out", "of", "Chennai", ".", "We", "are", "the", "rock", "et", "fuel", "for", "other", "start", "ups", "across", "the", "world", ",", "power", "ing", "them", "with", "extremely", "high", "-", "quality", "software", ".", "We", "help", "entrepreneur", "s", "build", "their", "vision", "into", "beautiful", "software", "products", "."]

Partner with Us for Success

Experience seamless collaboration and exceptional results.

Characters: For character-level tokenization, the sentence would be split into individual characters: ["f", "2", "2", " ", "L", "a", "b", "s", ":", " ", "A", " ", "s", "o", "f", "t", "w", "a", "r", "e", " ", "s", "t", "u", "d", "i", "o", " ", "b", "a", "s", "e", "d", " ", "o", "u", "t", " ", "o", "f", " ", "C", "h", "e", "n", "n", "a", "i", ".", " ", "W", "e", " ", "a", "r", "e", " ", "t", "h", "e", " ", "r", "o", "c", "k", "e", "t", " ", "f", "u", "e", "l", " ", "f", "o", "r", " ", "o", "t", "h", "e", "r", " ", "s", "t", "a", "r", "t", "u", "p", "s", " ", "a", "c", "r", "o", "s", "s", " ", "t", "h", "e", " ", "w", "o", "r", "l", "d", ",", " ", "p", "o", "w", "e", "r", "i", "n", "g", " ", "t", "h", "e", "m", " ", "w", "i", "t", "h", " ", "e", "x", "t", "r", "e", "m", "e", "l", "y", " ", "h", "i", "g", "h", "-", "q", "u", "a", "l", "i", "t", "y", " ", "s", "o", "f", "t", "w", "a", "r", "e", ".", " ", "W", "e", " ", "h", "e", "l", "p", " ", "e", "n", "t", "r", "e", "p", "r", "e", "n", "e", "u", "r", "s", " ", "b", "u", "i", "l", "d", " ", "t", "h", "e", "i", "r", " ", "v", "i", "s", "i", "o", "n", " ", "i", "n", "t", "o", " ", "b", "e", "a", "u", "t", "i", "f", "u", "l", " ", "s", "o", "f", "t", "w", "a", "r", "e", " ", "p", "r", "o", "d", "u", "c", "t", "s", "."]

Step 2: Mapping Tokens to Numerical IDs

Once the sentence is tokenized, each token is mapped to a unique numerical ID using a vocabulary. The vocabulary is a predefined mapping that associates each token with a specific ID. For example:

Vocabulary:

{"f22": 1501, "Labs": 1022, ":": 3, "A": 4, "software": 2301, "studio": 2302, "based": 2303, "out": 2304, "of": 2305, "Chennai": 2306, ".": 5, "We": 6, "are": 7, "the": 8, "rocket": 2307, "fuel": 2308, "for": 2309, "other": 2310, "startups": 2311, "across": 2312, "world": 2313, ",": 9, "powering": 2314, "them": 2315, "with": 2316, "extremely": 2317, "high-quality": 2318, "products": 2319, "entrepreneurs": 2320, "build": 2321, "their": 2322, "vision": 2323, "into": 2324, "beautiful": 2325}

Token IDs:

[1501, 1022, 3, 4, 2301, 2302, 2303, 2304, 2305, 2306, 5, 6, 7, 8, 2307, 2308, 2309, 2310, 2311, 2312, 2313, 9, 2314, 2315, 2316, 2317, 2318, 2301, 5, 6, 2320, 2321, 2322, 2323, 2324, 2325]

So the original sentence is represented as the sequence of token IDs.

Real-World Tokenization

To analyze the tokens and token IDs for your example sentence using OpenAI's tokenizer, you can follow these steps:

1. Visit the Tokenizer Tool: Go to OpenAI's Tokenizer to access the tool.

2. Input Your Sentence: Enter your example sentence in the text box. 

View Tokens and IDs: The tool will display the tokens and their corresponding token IDs. Each word or subword will be split into tokens as per the GPT tokenizer's rules, and you can see how the sentence breaks down.

Analyze the tokens and token IDs using ChatGPT

Token IDs

Token IDs

Suggested Reads- What is a Large Language Model (LLM)

Conclusion

Tokenization is the crucial first step in transforming raw text into a format that machine learning models can understand. By breaking down sentences into tokens and converting them to numerical IDs, we prepare text data for further processing and analysis. Understanding how tokenization works is essential for anyone working with NLP tasks and models.

Author-Ajay Patel
Ajay Patel

AI engineer passionate about building intelligent systems that solve real-world problems through cutting-edge technology and innovative solutions.

Phone

Next for you

List of 6 Speech-to-Text Models (Open & Closed Source) Cover

AI

Nov 30, 20246 min read

List of 6 Speech-to-Text Models (Open & Closed Source)

In an increasingly digital world, where audio and voice data are growing at an incredible pace, speech-to-text (STT) models are proving to be essential tools for converting spoken language into written text with accuracy and speed.  STT technology unlocks remarkable possibilities in diverse fields, from hands-free digital assistance and real-time meeting transcription to accessibility for individuals with hearing impairments and even automated customer support. This blog will dive into the fasc

How Does Vector Databases Work? (A Complete Guide) Cover

AI

Nov 30, 20245 min read

How Does Vector Databases Work? (A Complete Guide)

Vector databases have emerged as crucial tools for handling and searching high-dimensional data. They leverage vector embeddings to represent complex data points in a way that enables efficient similarity searches. Here’s a detailed look at how vector databases operate, from data processing to querying. 1. Embedding Embedding is the process of converting data into numerical vectors. This transformation allows disparate data types, such as text, images, or audio, to be represented in a consist

What is Hugging Face and How to Use It? Cover

AI

Nov 30, 20244 min read

What is Hugging Face and How to Use It?

If you're into Artificial Intelligence (AI) or Machine Learning (ML), chances are you've heard of Hugging Face making waves in the tech community. But what exactly is it, and why has it become such a crucial tool for AI developers and enthusiasts?  Whether you're a seasoned developer or just starting your AI journey, this comprehensive guide will break down Hugging Face in simple terms, exploring its features, capabilities, and how you can leverage its powerful tools to build amazing AI applica