Facebook iconWhat is Tokenization and How does it work? - F22 Labs
Blogs/AI

What is Tokenization and How does it work?

Oct 31, 20244 Min Read
Written by Ajay Patel
What is Tokenization and How does it work? Hero

Tokenization is a fundamental process in Natural Language Processing (NLP) and plays a crucial role in preparing text data for machine learning models. This blog post will break down what tokenization is, why it's important, and how it works with a concrete example.

What is Tokenization?

Tokenization is the process of splitting text into smaller, manageable pieces called tokens. These tokens can be words, subwords, characters, or other units depending on the tokenization strategy. The purpose of tokenization is to transform text into a format that can be effectively processed by machine learning algorithms.

Why is Tokenization Important?

Before any NLP model can analyze and understand text, it needs to be converted into a numerical format. Tokenization is the first step in this conversion process. By breaking down text into tokens, we enable models to handle, learn from, and make predictions based on textual data.

How Tokenization Works

Let’s dive into a practical example to understand tokenization better. Consider the sentence:

"f22 Labs: A software studio based out of Chennai. We are the rocket fuel for other startups across the world, powering them with extremely high-quality software. We help entrepreneurs build their vision into beautiful software products."

Here’s a step-by-step breakdown of how tokenization works:

Step 1: Splitting the Sentence into Tokens

The first step in tokenization is breaking the sentence into smaller units. Depending on the tokenizer used, these tokens can be:

Partner with Us for Success

Experience seamless collaboration and exceptional results.

Words: ["f22", "Labs", ":", "A", "software", "studio", "based", "out", "of", "Chennai", ".", "We", "are", "the", "rocket", "fuel", "for", "other", "startups", "across", "the", "world", ",", "powering", "them", "with", "extremely", "high-quality", "software", ".", "We", "help", "entrepreneurs", "build", "their", "vision", "into", "beautiful", "software", "products", "."]

Subwords: the tokens might be more granular. For example, ["f22", "Lab", "s", ":", "A", "software", "studio", "based", "out", "of", "Chennai", ".", "We", "are", "the", "rock", "et", "fuel", "for", "other", "start", "ups", "across", "the", "world", ",", "power", "ing", "them", "with", "extremely", "high", "-", "quality", "software", ".", "We", "help", "entrepreneur", "s", "build", "their", "vision", "into", "beautiful", "software", "products", "."]

Characters: For character-level tokenization, the sentence would be split into individual characters: ["f", "2", "2", " ", "L", "a", "b", "s", ":", " ", "A", " ", "s", "o", "f", "t", "w", "a", "r", "e", " ", "s", "t", "u", "d", "i", "o", " ", "b", "a", "s", "e", "d", " ", "o", "u", "t", " ", "o", "f", " ", "C", "h", "e", "n", "n", "a", "i", ".", " ", "W", "e", " ", "a", "r", "e", " ", "t", "h", "e", " ", "r", "o", "c", "k", "e", "t", " ", "f", "u", "e", "l", " ", "f", "o", "r", " ", "o", "t", "h", "e", "r", " ", "s", "t", "a", "r", "t", "u", "p", "s", " ", "a", "c", "r", "o", "s", "s", " ", "t", "h", "e", " ", "w", "o", "r", "l", "d", ",", " ", "p", "o", "w", "e", "r", "i", "n", "g", " ", "t", "h", "e", "m", " ", "w", "i", "t", "h", " ", "e", "x", "t", "r", "e", "m", "e", "l", "y", " ", "h", "i", "g", "h", "-", "q", "u", "a", "l", "i", "t", "y", " ", "s", "o", "f", "t", "w", "a", "r", "e", ".", " ", "W", "e", " ", "h", "e", "l", "p", " ", "e", "n", "t", "r", "e", "p", "r", "e", "n", "e", "u", "r", "s", " ", "b", "u", "i", "l", "d", " ", "t", "h", "e", "i", "r", " ", "v", "i", "s", "i", "o", "n", " ", "i", "n", "t", "o", " ", "b", "e", "a", "u", "t", "i", "f", "u", "l", " ", "s", "o", "f", "t", "w", "a", "r", "e", " ", "p", "r", "o", "d", "u", "c", "t", "s", "."]

Step 2: Mapping Tokens to Numerical IDs

Once the sentence is tokenized, each token is mapped to a unique numerical ID using a vocabulary. The vocabulary is a predefined mapping that associates each token with a specific ID. For example:

Vocabulary:

{"f22": 1501, "Labs": 1022, ":": 3, "A": 4, "software": 2301, "studio": 2302, "based": 2303, "out": 2304, "of": 2305, "Chennai": 2306, ".": 5, "We": 6, "are": 7, "the": 8, "rocket": 2307, "fuel": 2308, "for": 2309, "other": 2310, "startups": 2311, "across": 2312, "world": 2313, ",": 9, "powering": 2314, "them": 2315, "with": 2316, "extremely": 2317, "high-quality": 2318, "products": 2319, "entrepreneurs": 2320, "build": 2321, "their": 2322, "vision": 2323, "into": 2324, "beautiful": 2325}

Token IDs:

[1501, 1022, 3, 4, 2301, 2302, 2303, 2304, 2305, 2306, 5, 6, 7, 8, 2307, 2308, 2309, 2310, 2311, 2312, 2313, 9, 2314, 2315, 2316, 2317, 2318, 2301, 5, 6, 2320, 2321, 2322, 2323, 2324, 2325]

So the original sentence is represented as the sequence of token IDs.

Real-World Tokenization

To analyze the tokens and token IDs for your example sentence using OpenAI's tokenizer, you can follow these steps:

Partner with Us for Success

Experience seamless collaboration and exceptional results.

1. Visit the Tokenizer Tool: Go to OpenAI's Tokenizer to access the tool.

2. Input Your Sentence: Enter your example sentence in the text box. 

View Tokens and IDs: The tool will display the tokens and their corresponding token IDs. Each word or subword will be split into tokens as per the GPT tokenizer's rules, and you can see how the sentence breaks down.

Analyze the tokens and token IDs using ChatGPT

Token IDs

Token IDs

Suggested Reads- What is a Large Language Model (LLM)

Conclusion

Tokenization is the crucial first step in transforming raw text into a format that machine learning models can understand. By breaking down sentences into tokens and converting them to numerical IDs, we prepare text data for further processing and analysis. Understanding how tokenization works is essential for anyone working with NLP tasks and models.

Author-Ajay Patel
Ajay Patel

Hi, I am an AI engineer with 3.5 years of experience passionate about building intelligent systems that solve real-world problems through cutting-edge technology and innovative solutions.

Phone

Next for you

Difference Between VAPI AI vs PIPECAT Voice AI Platforms Cover

AI

Feb 21, 20253 min read

Difference Between VAPI AI vs PIPECAT Voice AI Platforms

Voice AI agents have become integral in various sectors, offering capabilities such as customer support automation, virtual assistance, and interactive voice response systems. Choosing the appropriate platform can significantly impact the efficiency and effectiveness of these applications. This article delves into Vapi AI and Pipecat, examining their offerings to help you determine which aligns best with your organizational needs. What is Vapi AI? Vapi AI is a developer-centric platform desig

Difference Between VAPI AI vs VOCODE Platforms Cover

AI

Feb 21, 20253 min read

Difference Between VAPI AI vs VOCODE Platforms

Voice AI platforms are transforming industries by enhancing customer service, healthcare, communication, and home automation. Choosing the right platform can significantly impact your organization's efficiency and customer satisfaction. This blog provides a detailed comparison between two Voice AI platforms: Vapi AI and Vocode. We'll explore their features, pros and cons, pricing structures, and customer reviews to help you make an informed decision. What is Vapi AI? Vapi AI is a developer-ce

Difference Between VAPI AI vs RASA Voice AI Platforms Cover

AI

Feb 21, 20254 min read

Difference Between VAPI AI vs RASA Voice AI Platforms

Conversational AI platforms have become integral in enhancing customer interactions, automating support, and streamlining operations across various industries. Vapi AI and Rasa are two notable platforms offering distinct approaches to building and deploying conversational agents. Understanding their unique offerings is essential for businesses to align their technological investments with their strategic objectives. What is Vapi AI? Vapi AI is a platform designed to enable developers to swift